您好,欢迎来到报告网![登录] [注册]

金属零件的直接快速制造技术及发展趋势

    增材快速成形与制造技术在高形状复杂度、高功能复杂度零件的制造方面独具特色,被认为是现代制造技术发展史上的一个里程碑,并正向高功能、高性能材料零件直接制造方向发展,对制造业产生着深远的影响[1-2]。其中,金属零件的直接快速制造(DirectRapidMetalManufacturing)需求范围最广,也是其主要发展方向之一。目前主要有采用激光束、电子束、等离子束的高能三束,以及非高能束的成形方法,该技术可直接由零件CAD模型,完成难加工复杂形状金属零件的快速成形,还可根据零件不同部位的工作条件与特殊性能要求实现梯度功能材料零件的快速成形。因此,这是一种零件结构与材料设计、新材料制备、成形、加工一体化的创形创质并行的短流程、数字化制造技术,代表着先进制造技术的发展方向。由于该技术和装备在航空航天、国防、能源、交通等尖端支柱领域的重要应用前景,受到发达国家政府和企业的高度重视和大力支持,但目前尚处在工业规模实用化的前夜。

    高能束金属零件直接快速制造技术现状

    因篇幅所限,本课题主要分析广泛使用的致密金属零件的直接快速制造技术现状,其中,采用高能束流的直接制造主要有选区激光熔化/烧结成形法(SLM/SLS)和激光近终成形法(LENS)、电子束成形法(EBM)、等离子束熔积成形法(PDM),以及其它派生的技术。

    1、SLM技术

    SLM(SelectiveLaserMelting)技术是在SLS技术基础上发展起来的,与SLS方法的相同之处是,因控制热变形困难等限制而只适于成形复杂形状小型件;不同之处是将粉末烧结改良成粉末熔化,省去了SLS法后续的低熔点金属浸渗致密化环节,较SLS方法可直接成形密度显著提高的金属产品。然而,对于成形过程中出现的熔化金属“聚球”现象,需严格控制材料参数、工艺参数和扫描方式才能减轻[3]。要得到高致密度零件需采用热等静压技术,但这往往需要后续加工来保证精度,从而增加了制造难度、时间和成本。SLM/SLS技术皆因采用层层铺粉的送料方式而难以制造梯度功能材料FGM零件。图1为MTT公司采用SLM技术制造的金属零件[4]。

    PHENIXSYSTEMS公司研究开发了与SLS方法相似的激光烧结方法,不同之处在于采用了激光固相烧结的专利技术,并使用了光纤激光器。公司宣称:金属粉末成形无后续热处理工序[5],但未见其对成形件密度数据影响的报道;其开发的PM250机型的圆柱成形室空间为直径250mm,高300mm,成形材料采用高温合金、不锈钢、模具钢等粉末。

    2、LENS技术

    由美国Sandia国家试验室与AlliedSignalInc.,EastmanKodakCo.,HasbroInc.,LaserFareInc.等公司合作开发,已成功制造了316、304不锈钢,Inconel625、690、718镍基高温合金,H13工具钢,Ti-6Al-4V钛合金以及镍铝金属间化合物等材料零件,还制备了316-304不锈钢、304不锈钢-A690合金、Fe-Cu、Ti-V和Ti-Mo梯度材料零件,显示出其在功能梯度材料制备方面的独特优势。目前,Optomec公司专门从事该技术的商业化工作,已开发出1kW的LENS850商业机,运动定位精度在X-Y方向为0.05mm,Z方向0.5mm,成形最小层厚0.0756mm,最大成形速度8.19cm3/h[6]。图2为Optomec公司开发的LENS850成形机成形腔内状况和成形零件。

    此外,还有一些基于LENS技术原理的激光成形技术。如LosAlamos国家试验室与SyntheMet合作开发的DLF(DirectedLightFabrication)技术,与LENS技术的不同之处是它可直接由CAD模型分层获得加工路径格式文件,避免了STL文件格式的数据冗余和错误。可用的成形材料有AISI316和400不锈钢、FeNi合金、AlCu、Ag、Cu合金,P20工具钢、Ti、W、Re合金,以及钛铝、镍铝、钼硅等金属间化合物等[7]。Michigan大学J.Mazumder教授等提出的DMD技术(DirectMetalDeposition)与LENS技术的区别主要是增加了实时反馈系统[8]。

    美国JohnsHopkins大学、PennState大学和MTS公司合作开发的LasForm工艺,与LENS技术不同之处是采用了19kW大功率CO2激光器和稳定的快速供粉系统,单道堆积宽度和厚度分别达13mm和4mm,工作空间达3m×3m×1.2m,成形速度明显高于LENS激光成形工艺[9]。但MTS公司成立的AeroMet子公司的教训表明,即使经热等静压(HIP)、模锻后加工之后,成形件的疲劳等关键力学性能仍低于钛合金锻件,故未能有效解决激光成形大型钛合金结构件内部质量和力学性能控制等关键技术难题,加之成本过高,最终导致该公司关闭。

    国内西北工业大学、北京航空航天大学、有色金属研究院、清华大学、南京航空航天大学、上海交通大学等单位都开展了基于LENS技术的激光直接成形技术研究。北京航空航天大学王华明教授研究小组开发了激光快速成形双相钛合金“特种热处理”新工艺,提出“热应力离散控制”新方法,制造出的大型整体钛合金飞机结构试验件[10]。

   3、EBM电子束成形技术

    瑞典Chalmers工业大学与Arcam公司合作开发了电子束熔化(ElectronBeamMelting,EBM)技术,并以CAD-to-Metal申请了专利[11]。EBM技术采用粉末成形,成形零件尺寸250mm×250mm×200mm,成形速度1cm3/min,最小孔隙率可控制在0.5%以内,适于复杂小型近终件成形,为提高成形效率,最近还开发了多束电子束成形机。因其对硬件和环境的要求高,整个成形过程须在真空室内进行,设备和运行成本高;也存在表面熔化金属“聚球”现象,且与层层铺粉的SLS/SLM法相似,难以成形梯度功能材料零件,且成形精度尚不足。图3为美国宇航局兰利研究中心(NASALangleyResearchCenter)采用EBM成形或经后加工的样品及特点。最大尺寸为15.24cm×15.24cm×15.24cm,层厚为0.5mm~1.27mm,沉积率为80cm3/h,零件精度:±1.27mm~2.54mm。

    图3美国宇航局兰利研究中心(NASALangleyResearchCenter)采用EBM成形与后加工的样品

    麻省理工学院的MatzJ.在美国海军研究局(ONR)的资助下研究了电子束实体自由成形(Electron-beamSolidFreeformFabrication,EBSFF)技术,其与EBM技术的不同之处是采用电子束熔化同步输送的金属丝材,其成形的组织较铸造方法细小。国内清华大学开发的电子束选区同步烧结工艺,可在整体成形区域内,材料同步升温、烧结、沉积和降温,减小了热应力,提高了零件成形的精度和质量[12]。

    4、PDM等离子束成形法

    等离子熔积(PDM)成形方法是利用经电磁、几何和热压缩的转移电弧产生高温高速的等离子束流,使金属达到熔融态,并按设定的三维空间轨迹逐层熔积成形。本课题作者开发了PDM成形工艺与设备[13],研究结果表明:该方法冶金过程充分,组织性能明显优于真空铸件,密度与锻件相当;成形效率、材料和能量利用率高,设备投资和运行成本远低于激光束和电子束成形方法,但因弧柱较这两种方法粗,成形精度不及这两者。所以,上述三种高能束直接成形方法在成形精度、成形效率、成本和功能等方面各有优缺点,难以全面兼顾。

    最近,作者对空间圆管、弹簧等平面轮廓环沿空间引导线扫掠形成的空间扫掠式复杂结构实体直接成形进行研究,采用成形方向沿引导轴线切向且不断变化的楔形切片方式进行路径规划,开发了变向变厚楔形切片的算法,直接快速成形了图4所示的变向渐缩式不锈钢空间螺旋管,表明了该技术具有成形复杂形状零件成形性的能力。

  非高能束直接快速制造技术

    1、超声波固结成形技术

    超声波固结成形技术,由Solidica公司(AnnArbor,Michigan)开发。与采用热能束的金属零件快速成形过程的区别在于:第一,不采用金属粉末作为原材料,采用多种金属薄带,如铝带等;第二,无成形热源,而是采用超声波技术,将各层铝带固结在一起,制作金属零件。此外,可将成形与铣削结合,保证零件精度和表面质量。该技术能制作深槽、空洞、网格、内部蜂巢状结构体,以及形状复杂而传统去除型工艺无法制造的金属零件[14]。

    2、其他技术

    由MIT开发3DP(3Dinkjetprinting)技术,授权给ExOne公司及其Prometal子公司开发应用,类似的还有fcubic公司的技术[15],都是通过喷头,用粘结剂将粉末以及各层粘接起来积层成形。因制品密度和强度较低,故需后续去粘结剂和浸渗低熔点金属致密化的热处理,致使工序和成本增加;且与SLS技术相似,因控制热变形困难,因此仅适于小型件的制造,零件尺寸小于30mm,表面粗糙度约为4μm。该技术主要使用了铁、铜、钨、镍合金等材料。图5为fcubic公司制造的气缸盖模型。

 
 

我要投稿 版权投诉
  1. 标签 金属零件
  2. 品牌、内容合作请点这里: 寻求合作>>
金属零件行业标签

宇博智业产业研究院

博智业产业研究院是国内专业的市场调研、规划咨询、 IPO&募投可研 、投资咨询权威机构之一,运营总部位于北京,并在厦门、香港、上海···

如您想投稿,请将稿件发送至邮箱

seles@yuboinfo.com,审核录用后客服人员会联系您

机构入驻请扫二维码,可申请开通机构号

Copyright © 2023 baogao.com 报告网 All Rights Reserved. 版权所有

闽ICP备09008123号-13